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Abstract
We analyse the performance of a linear code used for data compression of
a Slepian–Wolf type. In our framework, two correlated data are separately
compressed into codewords employing Gallager-type codes and cast into a
communication network through two independent input terminals. At the
output terminal, the received codewords are jointly decoded by a practical
algorithm based on the Thouless–Anderson–Palmer approach. Our analysis
shows that the achievable rate region presented in the data compression theorem
is described as first-order phase transitions among several phases. The typical
performance of the practical decoder is also well evaluated by the replica
method.

PACS numbers: 05.20.-y, 05.70.Ph, 64.60.Cn, 89.70.+c

Data compression, or source coding, is a scheme to reduce the size of data in information
representation. In his seminal paper [9], Shannon showed that for an information source
represented by a distribution P(ξ) of an N -dimensional Boolean (binary) vector ξ, one can
employ another representation in which the message length N is reduced to M (� N) without
any distortion, if the code rate R = M/N satisfies R � H2(ξ) in the limit N,M → ∞.
Here, H2(ξ) = −(1/N)TrξP(ξ) log2 P(ξ) represents the binary entropy per bit in the original
representation ξ indicating the optimal compression rate. Unfortunately, Shannon’s theorem
itself is non-constructive and does not provide explicit rules for devising the optimal codes.
Therefore, it is surprising that a practical code proposed by Lempel and Ziv (LZ) in 1973 [14]
saturates Shannon’s optimal compression limit in the case of a single-user interface, when
lossless compression scenarios are considered. However, it should be emphasized here that
generalization of the LZ codes to advanced data compression suitable for multi-user interface
is difficult, although the importance of the network is rapidly increasing.

The purpose of this letter is to employ recent developments of the research on error-
correcting codes (ECC), to construct a simple model of a data compression scheme and to
present a physical picture of it. More specifically, we will investigate the efficacy and the limi-
tation of a linear compression scheme inspired by Gallager’s codes [2], which has been actively
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Figure 1. (a) SW system: a network introduced in the data compression theorem. Separate coding
is assumed in the distributed system. (b) Achievable rate region: code rates are classified into four
categories according to whether the two compressed data are decodable or not. The parameter
regime where the both data are decodable without any distortion is termed the achievable rate
region.

investigated in both the information theory and physics communities [4–6,8], when it is applied
to the data compression problem introduced by Slepian and Wolf (SW) in their research on
multi-terminal information theory [1,10]. Unlike the existing argument in information theory,
our approach based on statistical mechanics makes it possible not only to assess the theoretical
bounds of the achievable performance but also to provide practical encoding/decoding methods
that can be performed in linear timescales with respect to the data length.

Let us start by setting up the framework of the SW problem [10]. In a general scenario,
two correlated N -dimensional Boolean vectors ξ and η are independently compressed to
M-dimensional vectors u and v, respectively. These compressed data (or codewords) u and
v are decoded to retrieve the original data simultaneously by a single decoder. A schematic
representation of this system is shown in figure 1(a).

The codes are composed of randomly selected sparse matricesA and B of dimensionality
M1 × N and M2 × N , respectively. These are constructed similarly to those of Gallager’s
ECC [4] as characterized byK1 andK2 nonzero unit elements per row and C1 and C2 nonzero
unit elements per column, respectively. The compression rates can be different between the two
terminals. Corresponding to matricesA and B, the rates are defined asR1 = M1/N = K1/C1

and R2 = M2/N = K2/C2, respectively. While both matrices are known to the decoder,
encoders only need to know their own matrix; that is, encoding is carried out separately
in this scheme as u = Aξ and v = Bη, where Boolean arithmetic is employed. After
receiving the codewords u and v, the pair of equations u = AS, v = Bτ should be
solved with respect to S and τ which become the estimates of the original data ξ and η,
respectively.

To facilitate the current investigation we first map the problem to that of an Ising model
with finite connectivity [11]. We employ the binary representation (+1,−1) of the dynamical
variables S and τ and of the vectors u and v rather than the Boolean (0, 1) one; the vector
u is generated by taking products of the relevant binary data bits u〈i1,i2,...,iK1 〉 = ξi1ξi2 · · · ξiK1

,
where the indices i1, i2, . . . , iK1 correspond to the nonzero elements of A, producing a binary
version of u, and similarly for v. Assuming the thermodynamic limitN,M1,M2 → ∞, while
keeping the code rates R1 = M1/N and R2 = M2/N finite is quite natural as communication
to date generally requires transmitting large data, where finite size corrections are likely to be
negligible. To explore the system’s capabilities we examine the partition function
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Z = Tr
S,τ

P(S, τ )
∏

〈i1,i2,...,iK1 〉
[1 + 1

2A〈i1,i2,...,iK1 〉(u〈i1,i2,...,iK1 〉 · Si1Si2 · · · SiK1
− 1)]

×
∏

〈i1,i2,...,iK2 〉
[1 + 1

2B〈i1,i2,...,iK2 〉(v〈i1,i2,...,iK2 〉 · τi1τi2 · · · τiK2
− 1)]. (1)

The tensor product A〈i1,i2,...,iK1 〉u〈i1,i2,...,iK1 〉, where u〈i1,i2,...,iK1 〉 = ξi1ξi2 · · · ξiK1
, is the binary

equivalent of Aξ. Elements of the sparse connectivity tensor A〈i1,i2,...,iK1 〉 take the value 1 if
the corresponding indices of data are chosen (i.e. if all corresponding indices of the matrix
A are 1) and 0 otherwise; it has C1 unit elements per i index representing the system’s
degree of connectivity. Note that if the product Si1Si2 · · · SiK1

is in disagreement with the
corresponding element u〈i1,i2,...,iK1 〉, which implies an error for the parity check, the value of
the partition function Z vanishes. Similar arguments are valid for B〈i1,i2,...,iK2 〉 and v〈i1,i2,...,iK2 〉.
The probability P(S, τ ) represents our prior knowledge of data including the correlation
between the sources ξ and η. Note that the dynamical variables τ , introduced to estimate η,
are irrelevant to the performance measure with respect to the other data ξ.

Since the partition function (1) is invariant under the transformationsSi → Siξi , τi → τiηi ,
u〈i1,i2,...,iK1 〉 → u〈i1,i2,...,iK1 〉ξi1ξi2 · · · ξiK1

= 1 and v〈i1,i2,...,iK2 〉 → v〈i1,i2,...,iK2 〉τi1τi2 · · · τiK2
= 1, it

is useful to decouple the correlations between the vectors S, τ and ξ, η. Rewriting equation (1)
using this gauge, one obtains a similar expression apart from the first factor which becomes
P(S ⊗ ξ, τ ⊗ η), where S ⊗ ξ = (Siξi) and τ ⊗ η = (τiηi) for i = 1, 2, . . . , N .

The random selection of elements in A and B introduces disorder to the system; we average
the logarithm of the partition function Z(A,B,u, v) over the disorder and the statistical
properties of both data, using the replica method [13]. In the calculation, a set of order
parameters qa1,a2,...,al = 1

N

∑N
i=1 ZiS

a1
i S

a2
i · · · Sali and ra1,a2,...,al = 1

N

∑N
i=1 Yiτ

a1
i τ

a2
i · · · τ ali

arise, where a1, a2, . . . , al (l = 1, 2, . . .) represent replica indices, and the variables Zi and
Yi come from enforcing the restriction of C1 and C2 connections per index, respectively, as
in [6].

Assuming a replica symmetric ansatz, that is, qa1,a2,...,al = ∫
dx π(x)xl and ra1,a2,...,al =∫

dy ρ(y)yl [6], we obtain the following free energy per spin:

F = − 1

N
〈ln Z〉A,B,P

= − Extr
π,π̂,ρ,ρ̂

{
C1

K1

〈
ln

(
1 +

∏K1
i=1 xi

2

)〉
π

+
C2

K2

〈
ln

(
1 +

∏K2
i=1 yi

2

)〉
ρ

−C1

〈
ln

(
1 + xx̂

2

)〉
π,π̂

− C2

〈
ln

(
1 + yŷ

2

)〉
ρ,ρ̂

+
1

N

〈
ln

[
Tr
S,τ

N∏
i=1

C1∏
µ=1

(
1 + x̂µiSi

2

)

×
N∏
i=1

C2∏
µ=1

(
1 + ŷµiτi

2

)
P(S ⊗ ξ, τ ⊗ η)

]〉
π̂ ,ρ̂,P

}
(2)

where the brackets with the subscripts π and π̂ represent averages over the distribution π(x)
and its conjugate π(x̂) with respect to variables denoted by x ∈ [−1, 1] and x̂ ∈ [−1, 1] with
and without subscripts, respectively. Similar notations are also used for ρ and ρ̂. The bracket
with the subscript P denotes the average with respect to ξ and η following the data distribution
P(ξ,η).
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Taking the functional derivative with respect to the distributions π , π̂ , ρ and ρ̂, we obtain
the saddle point equations (SPE) with the effective fields Fi(· · ·) such that

exp
(
Fi(x̂µj∈L(µ)\i , ŷµi; ξ,η)ξiSi

)
2 coshFi(x̂µj∈L(µ)\i , ŷµi; ξ,η)

=
Tr

S\Si ,τ
∏

j∈L(µ)\i
∏C1

µ=1

( 1+x̂µj Sj
2

) ∏N
i=1

∏C2
µ=1

( 1+ŷµi τi
2

)P(S ⊗ ξ, τ ⊗ η)

Tr
S,τ

∏N
i

∏C1
µ=1

( 1+x̂µiSi
2

) ∏N
i=1

∏C2
µ=1

( 1+ŷµi τi
2

)P(S ⊗ ξ, τ ⊗ η)
(3)

and similarly for the other field. Notice that the notation S\Si represents the set of all dynamical
variables S except Si . On the other hand, L1(µ) and L2(µ) denote the set of all indices of
nonzero components in theµth row ofA andB, respectively. The notation L1(µ)\i represents
the set of all indices belonging to L1(µ) except i.

After solving these equations, the expectation of the overlap m1 = 1
N

〈∑N
i=1 ξi

sign 〈Si〉〉A,P can be theoretically evaluated, and similarly for m2 of the overlap between η

and its estimator. The performance of the current compression method can be measured by
the vector m = (m1,m2). Hereafter, we use the term ‘ferromagnetic’ to specify the perfect
retrieval, that is, m1 = 1 (or m2 = 1), while the term ‘paramagnetic’ implies the distortion, that
is, m1 < 1 (or m2 < 1). For instance, a term such as ‘ferromagnetic–paramagnetic (FP) phase’
denotes the phase characterized by the performance vector m ∈ {(m1,m2)|m1 = 1,m2 < 1},
and so on.

One can show that the ferromagnetic–ferromagnetic state (FF), described by the solutions
π(x) = δ(x − 1), π̂(x̂) = δ(x̂ − 1), ρ(y) = δ(y − 1) and ρ̂(ŷ) = δ(ŷ − 1), always satisfies
the SPE. In addition, in the limit of C1, C2 → ∞, four solutions describing the paramagnetic–
paramagnetic state (PP), π(x) = δ(x), π̂(x̂) = δ(x̂), ρ(y) = δ(y) and ρ̂(ŷ) = δ(ŷ), the
paramagnetic–ferromagnetic (PF) phase, π(x) = δ(x), π̂(x̂) = δ(x̂), ρ(y) = δ(y − 1) and
ρ̂(ŷ) = δ(ŷ − 1) and the FP state, π(x) = δ(x − 1), π̂(x̂) = δ(x̂ − 1), ρ(y) = δ(y)

and ρ̂(ŷ) = δ(ŷ), are also analytically obtained for an arbitrary joint distribution P(ξ,η).
Free energies corresponding to these solutions are provided from equation (2) as FFF =
− 1

N
Trξ,ηP(ξ,η) ln P(ξ,η), FPP = (R1 + R2) ln 2, FFP = R2 ln 2 − 1

N
TrξP(ξ) ln P(ξ),

FPF = R1 ln 2 − 1
N

TrηP(η) ln P(η), where subscripts stand for corresponding states and
P(ξ) = TrηP(ξ,η) and P(η) = TrξP(ξ,η) represent marginal distributions for the vectors
ξ and η, respectively.

Perfect decoding is theoretically possible if FFF is the lowest among the above four. The
corresponding parameter regime termed achievable rate region is shown in figure 1(b) as an
intersection of the inequalities

R1 + R2 � H2(ξ,η) R1 � H2(ξ|η) R2 � H2(η|ξ) (4)

where H2(ξ,η) = − 1
N

Trξ,ηP(ξ,η) ln P(ξ,η), H2(ξ|η) = H2(ξ,η)−H2(η) and H2(η|ξ) =
H2(ξ,η) − H2(ξ). It is worth noticing that this coincides with the achievable rate region
saturated by the optimal data compression in the current framework previously shown by
SW [10]. Namely, in the limit C1, C2 → ∞, the current compression codes provide the
optimal performance for arbitrary information sources.

For finite C1 and C2, the SPE can be solved numerically, but the properties of the system
highly depend on the source distribution P(ξ,η), which makes it difficult to go further without
any assumption on the distribution. As a simple but non-trivial example, we will focus here on
a component-wise correlated joint distribution P(S, τ ) = ∏N

i=1(1 + m1Si + m2τi + qSiτi)/4,
where a set of parametersm1, m2 and q characterize the data sources. Notice that q represents
the overlap between the data. To make it a distribution, these parameters must satisfy four
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Figure 2. Phase diagram for K1 = K2 = 6, C1 = C2 = 3 code in the case of component-wise
correlated source. Figure shows that the feasible region in them2–q plane form1 = 0.7 is classified
into three states. Phase boundaries obtained by numerical methods are indicated by ◦ with errorbars
(FF/PP and FF/PF) and ♦ (PF/PP). These are close to those for K1 = K2 → ∞, C2 = C2 → ∞
(curves and the vertical line). Practically decodable limits of the TAP/BP algorithm obtained for
N = 104 systems are indicated as •. These are well evaluated by the spinodal points of non-FF
solutions (� with errorbars). Inset: the practical limits are represented by the sizes of transmitted
information. Horizontal and vertical axes show the entropy of the second source τ and the joint
entropy, respectively. The shaded region cannot be achieved without the simultaneous decoding.

inequalities: 1 + m1 + m2 + q � 0, 1 − m1 + m2 − q � 0, 1 + m1 − m2 − q � 0 and
1 −m1 −m2 + q � 0.

Solving equations rigorously for decoding is computationally hard in general cases.
However, one can construct a practical decoding algorithm based on the belief propagation
(BP) [7] or the Thouless–Anderson–Palmer (TAP) approach [12]. It has recently been shown
that these two frameworks provide the same algorithm in the case of ECC [3]. This is also the
case under the current context. For this distribution, the algorithm derived from the BP/TAP
frameworks becomes

m1
µi = aµi + m1 + m2aµibi + qbi

1 + m1aµi + m2bi + qaµibi
m2
µi = bµi + m2 + m1aibµi + qai

1 + m1ai + m2bµi + qaibµi

m̂1
µi = uµ

∏
j∈L1(µ)\i

m1
µj m̂2

µi = vµ
∏

j∈L2(µ)\i
m2
µj

(5)

where we denote aµi ≡ tanh
∑

ν∈M1(i)\µ tanh−1 m̂1
νi and ai ≡ tanh

∑
µ∈M1(i)

tanh−1 m̂1
µi , and

similarly for b. Here, M1(i) and M2(i) indicate the set of all indices of nonzero components
in the ith column of the sparse matrices A and B, respectively. Equation (5) can be solved
iteratively from the appropriate initial conditions. After obtaining a solution, approximated
posterior means can be calculated for i = 1, 2, . . . , N as

m1
i = ai + m1 + m2aibi + qbi

1 + m1ai + m2bi + qaibi
m2
i = bi + m2 + m1aibi + qai

1 + m1ai + m2bi + qaibi
(6)

which provide an approximation to the Bayes-optimal estimators as ξi = sign(m1
i ) and

ηi = sign(m2
i ), respectively.

In order to investigate the efficacy of the current method for finite C1 and C2, we have
numerically solved the SPE and (5) for K1 = K2 = 6 and C1 = C2 = 3 (R1 = R2 = 1/2),
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results of which are summarized in figure 2. Numerical results for the SPE were obtained by an
iterative method using 104–105 bin models for each probability distribution. 10–102 updates
were sufficient for convergence in most cases. Similarly to the case of C1, C2 → ∞, there can
be four types of solutions corresponding to combinations of decoding success and failure on
the two sources. The obtained phase diagram is quite similar to that for C1, C2 → ∞. This
implies that the current compression code theoretically has a good performance close to the
optimal one that is saturated in the limit C1, C2 → ∞, although the choice of C1 = C2 = 3 is
far from such a limit.

However, this does not directly mean that the suggested performance can be obtained in
practice. Since the variables are updated locally in the BP/TAP decoding algorithm (5), it may
become difficult to find the thermodynamically dominant state when there appear suboptimal
states which have large basins of attraction. This suggests that the practical performance for
the perfect decoding is determined by the spinodal points of the suboptimal states, similar to
the case of ECC [6]. To confirm this conjecture, we have numerically compared the practical
limit of the perfect decoding obtained by the BP/TAP decoding algorithm (5) and the spinodal
points of the non-FF solutions. These two results exhibit an excellent consistency supporting
our conjecture.

In summary, we have developed an efficient method of data compression in a multi-
terminal scenario, taking advantage of the sparse matrix based linear compression codes.
We observed several practical properties of codes of this type in the simplest model of data
compression. Studying the typical performance of the linear compression codes in a network,
which complements the methods used in the information theory literature, is the first step
towards understanding typical properties of networks.

The author thanks Y Kabashima and T Ohira for valuable discussions. This work was partly
supported by the Japan Society for the Promotion of Science.
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